Studies of Interaction between Propranolol and Human Serum Albumin in the Presence of DMMP by Molecular Spectroscopy and Molecular Dynamics Simulation

Document Type: Article

Authors

1 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

3 Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran

4 Institute of Biochemistry & Biophysics, University of Tehran, Tehran , Iran

Abstract

The interaction between propranolol (PROP) and human serum albumin (HSA) was studied in the presence of dimethyl methylphosphonate (DMMP). DMMP is usually considered as a simulant for chemical warfare agents (CWAs). For this purpose fluorescence quenching, resonance light scattering (RLS), synchronous, three-dimensional fluorescence spectroscopy and molecular dynamics (MD) simulation were employed under physiological conditions. Fluorescence spectroscopy showed that DMMP could quench, and PROP increased intensity of the HSA fluorescence spectra. The presence of DMMP remarkably decreased binding constant of PROP to HSA. Therefore, by decreasing the amount of drugs transported to its target, the free drug concentration of the target would be raised, increasing the efficacy of the drug. The results of synchronous fluorescence and three-dimensional fluorescence spectra showed that the binding of PROP and DMMP to HSA induced conformational changes of HSA. According to molecular dynamics simulation results proposed that these ligands could interact with the HSA, with affecting the secondary structure of protein and with a modification of its tertiary structure.

Graphical Abstract

Studies of Interaction between Propranolol and Human Serum Albumin in the Presence of DMMP by Molecular Spectroscopy and Molecular Dynamics Simulation

Keywords

Main Subjects


 

 

[1]           Z. Ying, Y. Jiang, X. Du , G. Xie, J. Yu, H. Wang, Sensor Actuat. B-Chem. 125 (2007) 167.

[2]           S. Reutter, Environ. Health Persp. 107 (1999) 985.

[3]           C.P. Holstege, M. Kirk, F.R. Sidell, Crit. Care Clin. 13 (1997) 923.

[4]           F.R. Sidell, Nerve Agents. Medical Aspects of Chemical Warfare. Washington, DC: BordenInstitute, 2008.

[5]           E. Lee, Annals of the Academy of Medicine, Singapore, 1997.

[6]           E. Brunol, F. Berger, M. Fromm, R. Planade, Sensor Actuat. B-Chem. 120 (2006) 35.

[7]           S.L. Bartelt-Hunt, D.R. Knappe, M.A. Barlaz, Crit. Rev. Env. Sci. Tec. 38 (2008) 112.

[8]           G. Means, H.L. Wu, Arch. Biochem. Biophys. 194 (1979) 526.

[9]           R.M. Black, M.J. Harrison, R.W. Read, Arch. Toxicol. 73 (1999) 123.

[10]       M.A. Sogorb, A. Monroy, E. Vilanova, Chem. Res. Toxicol. 11 (1998) 1441.

[11]       C. Milstein, F. Sanger, Biochem. J. 79 (1961) 456.

[12]       M.A. Gotardo, J.O. Tognolli, H.R. Pezza, L. Pezza, Spectrochim. Acta A 69 (2008) 1103.

[13]       C.N. Yan, H.X. Zhang, P. Mei, Y. Liu, Chinese J. Chem. 23 (2005) 1151.

[14]       L. Li, Q. Pan, Y.X. Wang, G.W. Song, Z.S. Xu, Appl. Surf. Sci. 257 (2011) 4547.

[15]       E. Lindahl, B. Hess, D. Van Der Spoel, J. Mol. Model 7 (2001) 306.

[16]       S. Melchionna, M. Barteri, G. Ciccotti, J. Phys. Chem. 100 (1996) 19241.

[17]       C.M. Soares, V.H. Teixeira, A.M. Baptista,  Biophys. J. 84 (2003) 1628.

[18]       M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga, K. Nguyen, S. Su, J. Comput. Chem. 14 (1993) 1347.

[19]       D. Van der Spoel, E. Lindahl, J. Phys. Chem. B 107 (2003) 11178.

[20]       A.W. Schuttelkopf, D.M. Van Aalten, Acta Crystallogr. D 60 (2004) 1355.

[21]       H.  Berendsen, J. Postma, W. Van Gunsteren, J. Hermans, in: B. Pullman (Ed.), Interaction Models for Water in Relation to Protein Hydration, Intermolecular Forces, Reidel, Dordrecht, 1981.

[22]       T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98 (1993) 10089.

[23]       H. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, J. Comput. Chem. 18 (1997) 1463.

[24]       C. Danciulescu, B. Nick, F.J. Wortmann, Biomacromolecules 5 (2004) 2165.

[25]       N. Zhou, Y.Z. Liang, P. Wang, J. Mol. Struct. 872 (2008) 190.

[26]       Y.J. Hu, Y. Liu, L.X. Zhang, R.M. Zhao, S.S. Qu, J. Mol. Struct. 750 (2005) 174.

[27]       X. Shi, X. Li, M. Gui, H. Zhou, R. Yang, H. Zhang, Y. Jin, J. Lumin. 130 (2010) 637.

[28]       T. Yuan, A.M. Weljie, H.J. Vogel, Biochemistry 37 (1998) 3187.

[29]       J.R. Lakowicz, G. Weber, Biochemistry 12 (1973) 4161.

[30]       C. Wang, Y. Li, J. Agr. Food Chem. 59 (2011) 8507.

[31]       B. Iacob, I. Tiuca, E. Bodoki, R. Oprean, Farmacia 61 (2013) 79.

[32]       J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, London, 1983.

[33]       R.H. Bisby, S.W. Botchway, A.G. Crisostomo, J. Karolin, A.W. Parker, L. Schroder, Spectroscopy 24 (2010) 137.

[34]       F.S. Mohseni-Shahri, M.R. Housaindokht, M.R. Bozorgmehr, A.A. Moosavi-Movahedi, J. Lumin. 154 (2014) 229.

[35]       T. Yuan, A.M. Weljie, H.J. Vogel. Biochemistry 37 (1998) 3187.

[36]       A. Varshney, P. Sen, E. Ahmad, M. Rehan, N. Subbarao, R.H. Khan, Chirality 22 (2010) 77.

[37]       Y.J. Hu, Y. Liu, Z.B. Pi, S.S. Qu, Bioorgan. Med. Chem. 13 (2005) 6609.

[38]       R. Subramanyam, A. Gollapudi, P. Bonigala, M. Chinnaboina, D.G. Amooru, J. Photoch. Photobio. B 94 (2009) 8.

[39]       Y.Q. Wang, H.M. Zhang, G.C. Zhang, Q.H. Zhou, Z.H. Fei, Z.T. Liu, Z.X. Li, J. Mol. Struct. 886 (2008) 77.

[40]       Z. Chen, J. Liu, Y. Han, Talanta 71 (2007) 1246.

[41]       W. Lu, J. Shang, Spectrochim. Acta A 74 (2009) 285.

[42]       S.K. Patra, A.K. Mandal, M.K. Pal, J. Photoch. Photobio. A 122 (1999) 23.

[43]       M. Rodrıguez-Cuesta, R. Boqué, F. Rius, D. Picón Zamora,  M.  Martınez  Galera,  A.  Garrido  Frenich,

Anal. Chim. Acta 491 (2003) 47.

[44]       D. Li, Y. Wang, J.B. Chen, J. Spectrochim. Acta A 79 (2011) 680.

[45]       G. Zhang, Q. Que, J. Pan, J. Guo, J. Mol. Struct. 88 (2008) 132.

[46]       M.R. Housaindokht, M.R. Bozorgmehr, M. Bahrololoom, J. Theor. Biol. 254 (2008) 294.

[47]       Y. Wang, X. Wang, J. Wang, Y. Zhao, W. He, Z. Guo, Inorg. Chem. 50 (2011) 12661.

[48]       F. Ding, J.X. Diao, Y. Sun, Y. Sun, J. Agr. Food Chem. 60 (2012) 7218.

[49]       X. Pan, P. Qin, R. Liu, J. Wang, J. Agr. Food Chem. 59 (2011) 6650.