Change in Oxygen Absorption of Human Adult and Fetal Hemoglobin Due to 940 MHz Electromagnetic Field Radiation Exposure

Document Type: Article

Authors

1 Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran

2 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

Abstract

The effects of electromagnetic fields (EMFs) radiation at the frequency of 940 MHz on the structure and function of human adult and fetal hemoglobin (HbA and HbF) were studied. After extraction and purification of HbA and HbF, the oxygen absorption values for exposed and unexposed HbA and HbF to EMF were compared. The slope of oxygen absorption curve for exposed HbA was increased while that for HbF was decreased compare to those before EMF exposing. Furthermore, the oxygen absorption saturation values were changed from 3.4-5.1 and from 5.1-3.1 mg l-1, respectively for HbA and HbF after exposing to EMF. The UV-Vis, circular dichroism and fluorescence spectroscopy confirmed the quaternary structural changes of both proteins after EMF exposure. So that, the structural transition of HbA from tense to relaxed state caused an increasing in oxygen absorption; whilst in HbF, transition from relaxed to tense state was occurred and therefore oxygen absorption was decreased.

Graphical Abstract

Change in Oxygen Absorption of Human Adult and Fetal Hemoglobin Due to 940 MHz Electromagnetic Field Radiation Exposure

Keywords

Main Subjects


 [1]           S. Banik, S. Bandyopadhyay, S. Ganguly, Bioresource Tech. 87 (2003) 155.

[2]           S. Rai, U.P. Singh, G.D. Mishra, S.P. Singh, S.P. Samarketu, Electro. Magnetobiol. 13 (1994) 247.

[3]           S. Rai, U.P. Singh, G.D. Mishra, S.P. Singh, S.P. Samarketu, Electro. Magnetobiol. 13 (1994) 253.

[4]           K.K. Kesari, S. Kumar, J.  Nirala,  M.H.  Siddiqui,  J. Behari, Cell Biochem. Biophys. 65 (2013) 85. 

[5]           S.F. Cleary, Electromagnetic Bio-interaction Mechanisms, Safety Standards, Protection Guides, Plenum Press, New York, 1989.

[6]           E. Marani, H.K.P. Feirabend, Eur. J. Morphol. 32 (1994) 330.

[7]           K. Tahvanainen, J. Niño, P. Halonen, T. Kuusela, T. Alanko, T. Laitinen, E. Länsimies, M. Hietanen, H. Lindholm, Clin. Physiol. Funct. Imaging 27 (2007) 162.

[8]           C.V. Byus, R.L. Lundak, R.M. Fletcher, W.R. Adey, Bioelectromagnetics 5 (1984) 341.

[9]           C.V. Byus, K. Kartum, S. Pieper, W.R. Adey, Cancer Res. 48 (1988) 4222.

[10]       G. d'Ambrosio, R. Massa, L. Gianfreda, G.J.R. Greco, A. Scaglione, Alta Frequenza 58 (1989) 361.

[11]       J.W. Allis, B.L. Sinha-Robinson, Bio-electromagnetics 8 (1987) 203.

[12]       M. Porcelli, G. Cacciapuoti, S. Fusco, R. Massa, G. d'Ambrosio, C. Bertoldo, M. De Rosa, V. Zappia, FEBS Lett. 402 (1997) 102.

[13]       H. Lai, N.P. Singh, Bioelectromagnetics 16 (1995) 207.

[14]       A. Hekmat, A.A. Saboury, A.A. Moosavi-Movahedi, Ecotoxicol. Environ.  Saf. 88 (2013) 35.

[15]       S.J. Mousavy, G.H. Riazi, M. Kamarei, H. Aliakbarian, N. Sattarahmady, A. Sharifizadeh, S. Safarian, F. Ahmad, A.A. Moosavi-Movahedi, Inter. J. Biol. Macromol. 44 (2009) 278.

[16]       J.C. Kendrew, M.F. Perutz, Proc. Roy. Soc. 194 (1948) 375.

[17]       H.M. Jope, J.R.P. O'Brien, F.J.W. Roughton, J.C. Kendrew, Haemoglobin, Butterworths, London, Interscience Publishers, New York, 1949.

[18]       J. Wyman, J.A. Rafferty, E.N. Ingalls, J. Biol. Chem. 163 (1944) 275.

[19]       J. Wyman, Adv. Protein Chem. 4 (1948) 407.

[20]       W.A. Schroeder, J.R. Shelton, J.B. Shelton, J. Cormick, R.T. Jones, Biochemistry 2 (1963) 992.

[21]       S. Pin, C.A. Royer, E. Gratton, B. Alpert, G. Weber,  Biochemistry 29 (1990) 9194.

[22]       N. Ramadas, J.M. Rifkind, Biophys. J. 76 (1999) 1796.

[23]       J.A. Lukin, C. Ho, Chem Rev. 104 (2004) 1219.

[24]       A. Valenzuela, R. Guerra, L. Lazcano, P. Caiias, FEBS 196 (1986) 353.

[25]       A. Rossi-Fanelli, E. Antonini, A. Caputo, J. Biol. Chem. 236 (1961) 397.

[26]       M.W. Hassan, A. Ibrahim, R.F. Rieder, L.L. Cederqvist, Blood 54 (1979) 1140.

[27]       S.Y. Venyaminov, N.N. Kalnin, Biopolymers 30 (1990) 1243.

[28]       H. Ahmed, Principles and Reactions of Protein Extraction, Purification and Characterization, CRC Press, New York, 2005.

[29]       E. Antonini, M. Brunori, Annu. Rev. Biochem. 39 (1970) 977.

[30]       M.F. Perutz, Nature 228 (1970) 734.

[31]       K. Kanaori, Y. Tajiri, A. Tsuneshige, I. Ishigami, T. Ogura, K. Tajima, S. Neya, T. Yonetani, Biochim. et Biophys. Acta 1807 (2011) 1253.

[32]       J.R. Platt, A. Hollaender, Radiation Biology, McGraw Hill, New York, 1956.

[33]       C.C. Yao, X.K. Li, Y.X. Huang, Chin. Chem. Lett. 16 (2005) 1121.

[34]       S.M.T. Shaikh, J. Seetharamappa, P.B. Kandagal, D.H. Manjunatha, S. Ashoka, Dyes Pigm. 74 (2007) 665.

[35]       S. De, A. Girigoswami, J. Colloid Interf. Sci. 296 (2006) 324.

[36]       Y. Jin, H. Sakurai, Y. Nagai, M. Nagai, Biopolymers 74 (2004) 60.

[37]       R.E. Hirsch, R.S. Zukin, R.L. Nagel, Biochem. Biophys. Res. Commun. 93 (1980) 432.

[38]       A.J. Sulkowska, Mol. Struct. 614 (2002) 227.

[39]       W.A. Schroder, J.R. Shelton, J.B. Shelton, J. Cormick, Proceed. Natl. Acad. Sci. 48 (1962) 284.