The Effect of Hoffmeister Salts on the Chaperoning Action of β-Casein in Preventing Aggregation of Reduced β-Lactalbumin

Document Type : Article


1 Department of Biology, Faculty of Science, University of Sistan & baluchestan

2 Department of Biology, Faculty of Science, Universitiy of Sistan and Baluchestan,


Protein aggregation and precipitation is associated with many debilitating diseases including Alzheimer's, Parkinson's, and light-chain amyloidosis. β-Casein, a member of the casein family, has been demonstrated to exhibit chaperone-like activity to protect protein form aggregation. Hofmeister salts (lyotropice series) are a class of ions which have an effect on the solubility and also the stability of proteins. In this study, using a range of Hofmeister salts (Na2SO4, NaCl and KSCN) altered the rate of aggregation and precipitation of α-lactalbumin. The rate of aggregation of α-lactalbumin increased in the presence of all the added salts. However, Na2SO4 had the greatest effect on the rate of aggregation of α-lactalbumin. β-Casein effectively prevented the aggregation of α-lactalbumin but not as well as in the presence of the salt. Interestingly, in the presence of Na2SO4, β-casein was the poorer chaperone toward aggregation of α-lactalbumin compare to in the presence of NaCl and KSCN. Our result showed that all salts had structural effects on the β-casein which affects its chaperone ability. In summary, structural change and kinetic factors maybe be determinant the poorer chaperone ability of β-casein in the presence of salts.

Graphical Abstract

The Effect of Hoffmeister Salts on the Chaperoning Action of β-Casein in Preventing Aggregation of Reduced β-Lactalbumin


Main Subjects

[1]           C.M. Dobson, Semin. Cell Dev. Biol. 15 (2004) 3.
[2]           A. Ghahghaei, N. Faridi, JBISE 2 (2009) 345.
[3]           A.L. Horwich, J. Buchner, R.G. Smock, L.M. Gierasch, H.R. Saibil, Comp. Biophys. 3 (2012) 212.
[4]           K. Acharya, J. Ren, D. Stuart, D. Phillips, J. Mol. Biol. 221 (1991) 571.
[5]           S.L. Kelleher, D. Chatterton, K. Nielsen, B. Lonnerdal, Am. J. Clin. Nutr. 77 (2003) 1261.
[6]           K. Kuwajima, FASEB J. 10 (1996) 102.
[7]           M.F. Engel, C.P. Van Mierlo, A.J.J. Visser, Biol. Chem. 277 (2002) 10922.
[8]           J.A. Carver, R.A. Lindner, C. Lyon, D. Canet, H. Hernandez, C.M. Dobson, C. Redfield, J. Mol. Biol. 318 (2002) 815.
[9]           J.A. Carver, K.N. Guerreiro, A. Nicholls, R.J.W Truscott, Biochim. Biophys. Acta 1252 (1995) 251.
[10]       R.A. Lindner, A. Kapur, A.J. Carver, J. Biol. Chem. 272 (1997) 27722.
[11]       R.A. Lindner, T.M. Treweek, J.A. Carver, Biochem. J. 354 (2001) 79.
[12]       C.G.D. Kruif, R.P. May, Biochem. 200 (1991) 431.
[13]       N.L. Zakharchenkoa, T.A. Konnovaa, N.E. Gogolevaa, D.A. Faizullina, T. Haertleb, Yu. F. Zueva, Bioorg. Khim. 38 (2012) 192.
X.  Chen,  S.C.Flores, S.M. Lim, Y. Zhang, T. Yang,   y J. Kherb, P.S. Cremer, J. Ame. Chem. Soc. 26 (2010) 16447.
[15]       R.A. Linder, T.M. Treweek, J.A. Carver, Biochem. J.354 (2001) 79.
[16]       A. Ghahghaei, A. Karfarma, J. Dairy Sci. 93 (2013) 177.
[17]       H.E. Swaisgood, In Advanced Dairy Chem. Protein. 2 (1992) 63.
[18]       R.A. Lindner, A. Kapur, M. Mariani, S. Titmuss, J.A. Carver, Eur. J. Biochem. 258 (1998) 170.
[19]       W.R. Kirk, E. Kurian, F.G. Prendergast, Biophys. 70 (1996) 69.
[20]       D. Matulis, R. Lovrien, Biophys. 74 (1998) 422.
[21]       D. Matulis, C.G. Baumann, V.A. Bloomfield, R.E. Lovrien, Biopolymers 49 (1999) 451.
[22]       M.S. Kelly, T.J. Jess, N.C. Price, BBA 1751 (2005) 119.
[23]       F. Hofmeister, Arch. Exp. Pathol. Pharmacol. XXV. 24 (1888) 247.
[24]       J. Bhattacharyya, P. Santhoshkumar, K.K. Sharma, Biochem. Biophys. 307 (2003) 1.
[25]       A. Ghahghaei, S.Z. Bathaie, A. Shahraki, F. Rahmany-Asgarabad, Int. J. Pep. Res. Ther. 17 (2011) 101.
[26]       S.P. Sati, S.K. Singh, N. Kumar, A. Sharma, Eur. J. Biochem. 269 (2002) 5259.
[27]       J.M. Souza, B.I. Gisson, V.M.Y. Lee, H. Ischiropoulos, FEBS Lett. 747 (2000) 116.